Response of runoff and nitrogen loadings to climate and land use changes in the middle Fenhe River basin in Northern China

Author:

Zhu Xueping1ORCID,Chang Ke1,Cai Wenjun1,Zhang Aoran2,Yue Guangtao1,Zhao Xuehua1

Affiliation:

1. a College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2. b School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

Abstract Investigating and understanding the responses of runoff and nitrogen loading to climate and land use change is particularly important for future water resources management. In this article, the Soil and Water Assessment Tool (SWAT) was used to simulate runoff and nitrogen loading in the middle reaches of the Fenhe River. The model was calibrated by the SWAT calibration and uncertainty procedure (SWAT-CUP) to achieve the accuracy of simulating runoff and nitrogen loadings. Furthermore, 20 climate change scenarios and seven extreme land use change scenarios were set up and run on the calibrated model. The results showed that runoff and nitrogen loading decreased when temperature increased and increased with increasing precipitation. Runoff was more sensitive to changes in precipitation (±10%) than temperature (±2 °C), while nitrogen loading showed the opposite pattern. When the two climatic factors changed in the same direction, the combined effect was larger than either factor alone, whereas the change in the opposite direction produced a weaker effect. The changes produced by different extreme land use scenarios on runoff and nitrogen loading were significantly different and were more obvious during the flood season than in the non-flood season. The results of this study provide a useful guide for water resource managers.

Funder

Natural Science Foundation of Shanxi Province

Key Technologies Research and Development Program

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3