Change patterns of precipitation anomalies and possible teleconnections with large-scale climate oscillations over the Yangtze River Delta, China

Author:

Xu Yu1234ORCID,Zhao Yan5,Wu Yanjuan1,Gao Chao1

Affiliation:

1. a Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, China

2. b State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, China

3. c Ningbo Universities Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China

4. d Laboratory of Sustainable Urban Drainage, Ningbo University, Ningbo, China

5. e Yinzhou Water Resources Bureau of Ningbo City, Ningbo, China

Abstract

Abstract In view of the key factor in regional hydrological processes and water resource management, the temporal patterns of precipitation anomalies and oscillations were detected by the Quantile Perturbation Method (QPM) and the Singular Spectrum Analysis (SSA) Method, and the spatial patterns were identified using the Principal Component Analysis (PCA) Method. In addition, the teleconnections and lagged influence with large-scale climate oscillations in the Yangtze River Delta (YRD) of China from 1957 to 2016 were also analyzed. Results showed that, temporally, the main oscillations of precipitation were all found to be 2, 7–11 and 3–4 years in the annual and seasonal scales. Precipitation quantiles are subject to strong temporal oscillations at (multi-)decadal time scales, with high and low anomalies at specific periods. Spatially, the whole region could be divided into two main sub-regions in annual and seasonal scales, respectively. Among the selected large-scale climate oscillations in this study, the Pacific Decadal Oscillation (PDO) has a stronger influence on precipitation in March, July and September, but significant correlations were detected in more than 18% of the total stations. These stations were mainly in the southeast regions. The North Pacific index (NP) controlled the precipitation in February (13.95% of the total stations) and October (37.21% of the total stations) in the north region. Generally, the indicators of the Southern Oscillation Index (SOI) and Oceanic Niño 4 SST Index (ONI) had the strongest influence in regional precipitation variations, but significant correlations were detected in more than 20% of the total stations in March, September, October and November. Also, large-scale climate oscillations have a delayed way on precipitation. Among the oscillations, the Arctic Oscillation (AO) and North Atlantic Oscillation (NAO) showed that significant cross-correlations on precipitation were 0 and 3–5 months, respectively. NP showed significant cross-correlations with precipitation in many stations when the lag time was 0–3 months. Generally, the PDO, SOI and ONI have a greater influence in the south region, mainly with the lag time of 0–3, 2–3 and 1–5 months, respectively. The results will provide a basis for taking relevant measures to deal with problems of meteorological disaster and water supplement under climate change.

Funder

National Natural Science Foundation of China

Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering

Research Program of Ningbo University

Fund of Sustainable Urban Drainage Laboratory of Ningbo University

Fund of Humanity and Social Science Youth Foundation of Ministry of Education of China

Fund of Zhejiang Public Welfare Technology Research Project

Ningbo Fan-3315 Plan

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3