A pragmatic approach to the combined effect of climate change and water abstraction on Lake Ziway water balance, Ethiopia

Author:

Ashagre Hailemariam Molla1,Hatiye Samuel Dagalo2,Goshime Demelash Wondimagegnehu2ORCID

Affiliation:

1. a Faculty of Hydraulic and Water Resource Engineering, Arba Minch Water Technology Institute, Arba Minch University, P.O. Box 21, Arba Minch, Ethiopia

2. b Faculty of Water Resources and Irrigation Engineering, Arba Minch Water Technology Institute, Arba Minch University, P.O. Box 21, Arba Minch, Ethiopia

Abstract

Abstract Climate change and ongoing human activity have been threatening Ethiopia's Lake Ziway's water balance. However, few studies have been conducted to investigate the combined effects of climate change and water withdrawal on the lake's water balance using climate change and water withdrawal for irrigation. We used high-resolution multiple climate models and Representative Concentration Pathways (RCP) scenarios to assess the impact of climatic variables for two future periods: 2021–2050 and 2051–2080. Rainfall and temperature data biases were corrected using power transformation and variance scaling methods, respectively. The Hydrologiska Byråns Vattenbalansavdelning (HBV) hydrological model was employed to simulate surface inflow into Lake Ziway from the Meki and Katar sub-catchments. The FAO CROPWAT model was used to estimate the irrigation water demand of major crops grown in the study area. The results indicate that future temperatures and wet season runoff levels are expected to rise. Under the worst climate change scenario, climate change and water withdrawal from the lake for agriculture may cause the lake level to drop by 25 cm per year, resulting in a 10 km2 surface area and 101 Mm3 volume reductions. Therefore, implementing preventive measures, proper planning and careful monitoring of lake water use is advised.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3