Analysis of runoff variation and driving factors in the Minjiang River Basin over the last 60 years

Author:

Zhai Hongjuan12ORCID,Wang Meng12,Shen Dandan12,Hu Bo3,Li Yajun12

Affiliation:

1. a Changjiang River Resources Protection Institute, Changjiang Water Resources Commission, Wuhan, Hubei 430051, China

2. b Key Laboratory of Ecological Regulation of Non-point Source Pollution in Lake and Reservoir Water Sources, Changjiang Water Resources Commission, Wuhan, Hubei 430051, China

3. c Lancang-Mekong Water Resources Cooperation Center, Yangtze River Water Commission, Wuhan, Hubei 430010, China

Abstract

Abstract An absolute essential for effective water resource management and ecological restoration is knowing the temporal and spatial variation of runoff. The objective of this study was to determine the spatial and temporal changes in runoff at the main hydrological stations along the Minjiang River and the Dadu River between 1961 and 2016 using the non-parametric Mann-Kendall test and annual variation analysis. Canonical correspondence analysis and regression analysis were used to determine the contribution of anthropogenic disturbance, vegetation, and climatic conditions to runoff change. The runoff at each station of the Minjiang River showed a clear decreasing trend, whereas the decreasing trend of the Dadu River was not significant. Moreover, the discharge at the Shawan (SW) station upstream of the Dadu River and the Gaochang (GC) station downstream of the Minjiang River have changed significantly during the flood and non-flood seasons since 2000, while the discharge at other stations has not changed significantly. The average annual runoff in the non-flood season at SW and GC in 2011–2016 increased by approximately 26.21 and 36.47%, respectively, compared with 1961–2010. Anthropogenic disturbance, vegetation, and climatic conditions in the Minjiang River Basin accounted for 76.24, 13.62, and 10.14%, respectively, of the runoff change in the basin. Water consumption and total reservoir capacity were the specific factors most affecting runoff change in the basin, accounting for 15.10 and 13.94%, respectively, of the changes in runoff. The research can provide important support for the ecological restoration of Minjiang River Basin and Yangtze River Basin.

Funder

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3