A thermodynamic modeling of 2-bed adsorption desalination to promote main equipment performance

Author:

Amirfakhraei Amirhossein1,Khorshidi Jamshid1,Zarei Taleb1

Affiliation:

1. Department of Mechanical Engineering, University of Hormozgan, Bandar Abbas, Iran

Abstract

Abstract Adsorption desalination utilizes the discrete adsorption of the water vapor from the evaporator, and is capable of being discharged to the condenser. This study illuminated an advanced cycle of mass and heat recovery among beds, condensers, and evaporators. Morover, the thermodynamic modeling of adsorption desalination systems (ADS) under different operating conditions was investigated. Furthermore, its effect on the evaporator vapor production and the water vapor adsorption and desorption in the adsorption beds were accounted for. Parenthetically, the mathematical model of ADS thermodynamics was validated with the experimental data. Besides, the advanced ADS modeling was conducted via mass and heat recovery among beds, condensers, and evaporators. In addition to the amount of desalinated water, the time history chart of the equipment applied in the process with and without the thermal and mass recovery is also illustrated. Finally, under such operating conditions, the specific daily water production (SDWP) advanced ADS is 153% higher than conventional ADS.

Publisher

IWA Publishing

Subject

Filtration and Separation,Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3