Remarkable phosphate removal from saline solution by using a novel trimetallic oxide nanocomposite

Author:

Alimohammadi Mahsa1,Ayati Bita1

Affiliation:

1. Civil and Environmental Engineering Faculty, Tarbiat Modares University, P.O. Box 14115-397, Tehran, Iran

Abstract

Abstract Phosphate removal is an important measure to control eutrophication in aquatic environments, as it inhibits algal bloom. Salinity exists in these media along with high phosphate and currently available phosphate removal methods function poorly under this condition. In this study, the main objective is to fabricate a nanocomposite to improve and accelerate phosphate removal from saline solutions. To achieve this goal, Fe3O4/ZnO and a novel nanoadsorbent, Fe3O4/ZnO/CuO, were synthesized. Their characteristics were determined using FE-SEM, EDX, FT-IR, and XRD analyses, and their capability to adsorb phosphate from saline solutions was investigated and compared. The overall results suggest that the trimetallic oxide nanocomposite has great potential for the efficient removal of phosphate, in comparison with Fe3O4/ZnO. Experiments showed that Fe3O4/ZnO/CuO exhibited a remarkable sorption capacity of 156.35 mg P/g, fast sorption kinetic, strong selectivity for phosphate even in the presence of a high concentration of salinity (60 mg/L), and a wide applicable pH range of 3–6. Furthermore, using Fe3O4/ZnO/CuO, even a low dosage of 0.1 g/L was sufficient to reach an adsorption efficiency of 96.13% within 15 min compared to Fe3O4/ZnO (80.47% within 30 min). Moreover, the pseudo-second-order kinetic model best described the experimental adsorption data for both nanocomposites.

Publisher

IWA Publishing

Subject

Filtration and Separation,Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3