The Effect of Organic Compounds on Biological Phosphorus Removal

Author:

Abu-ghararah Z. H.1,Randall C. W.2

Affiliation:

1. Department of Civil Engineering, King Abdulaziz University, Jeddah-21413, Saudi Arabia

2. Department of Civil Engineering, VPI&SU, Blacksburg, VA 24061, USA

Abstract

The effect of influent organic compounds on the performance of a biological nutrient removal system was investigated using a pilot plant system operated as a UCT (University of Cape Town) process. The system was fed domestic sewage and operated at a sludge age of 13 days. The effects of separate addition of formic, acetic, propionic, butyric, isobutyric, valeric, and isovaleric acid on phosphorus release under anaerobic conditions, and phosphorus uptake under aerobic conditions, were studied. The effects of the organic acid additions on the removal of nitrogen and COD, and changes in SOUR and MLSS, were also studied. All added substrates, except formic acid, caused significant increases in phosphorus release in the anaerobic stage, and subsequent phosphorus uptake in the aerobic stage with an increase in phosphorus removal efficiency. It was also found that the branched organic acids, isobutyric and isovaleric, caused more phosphorus release in the anaerobic stage and better phosphorus removal efficiencies in the system, compared with the nonbranching forms of the same organic acids. The most recent biochemical model, proposed by Comeau et al. (1986) and Wentzel et al. (1986) was also tested using the data collected in this investigation. Both models, in most cases, overestimated the ratios of phosphorus release to volatile fatty acid utilized. All added substrates caused no change in either COD or TKN removals. For engineering applications, it is suggested by this research, that at least 20 mg COD equivalent of acetic acid is needed for the removal of 1 mg phosphorus.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3