Thermophilic Anaerobic Treatment of Sulfate-Rich Pulp and Paper Integrate Process Water

Author:

Rintala J.1,Sanz Martin J. L.2,Lettinga G.3

Affiliation:

1. Water and Environmental Engineering, Tampere University of Technology, P.O. Box 527, SF-33101 Tampere, Finland

2. Department of Molecular Biology, Faculty of Science, Autonomic University of Madrid, S-20049 Madrid, Spain

3. Department of Water Pollution Control, Agricultural University, Bomenweg 2, NL-6703 HD Wageningen, The Netherlands

Abstract

Anaerobic treatment of sulfate - rich (COD/SO4 ratio 1.4-2.1) clarified Whitewater from a thermomechanical pulping (TMP) process was studied in three laboratory-scale upflow anaerobic sludge blanket (UASB) reactors at 55°C and in batch digesters at 55° and 65°C. Different seed materials were used in the UASB reactors. The highest COD removal efficiency (effluent sulfide stripped) achieved was approximately 65 % in the UASB reactors. About 55 % COD removal efficiency was obtained at a loading rate of about 41 kgCODm−3d−1 in the UASB reactor seeded with thermophilic sludge cultivated with volatile fatty acids (VFAs). The total sulfide present in the liquid phase after anaerobic treatment accounted for approximately 65-78 % and 15-61 % of the removed COD in the batch digesters and the UASB reactors, respectively. Sulfate reduction was almost complete in the batch digesters, whereas about 24-64 % of sulfate was reduced in the UASB reactors. Acetate utilization for sulfate reduction was apparent in the batch digesters, whereas that could not be demonstrated in the UASB reactors. Sulfate reduction in the UASB reactors was obviously substrate limited. In conclusion, thermophilic anaerobic treatment is an alternative for the treatment of warm sulfate rich TMP process water.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3