Membrane Filtration Combined with Biological Treatment for Purification of Bleach Plant Effluents

Author:

Boman B.,Ek M.,Heyman W.,Frostell B.

Abstract

A bleach plant effluent from softwood kraft pulping was treated in the laboratory with a combination of ultrafiltration and different biological methods. The E-stage effluent was firstly membrane filtered using membranes with a nominal cut-off of 8,000 Dalton. In the filtration, a concentration factor of 15 was used at 55°C. The treatment resulted in 89% AOX removal and 87% COD removal. Calculated in relation to the actual flows of E-stage and (C+D)-stage effluent at the mill, this corresponded to AOX and COD removals of 20% and 41% respectively. Before the biological treatment, the permeate was mixed with (C+D)-stage effluent and treated in three parallel biological systems, an aerated lagoon with and without solids recycle, an airlift system with a mixed fungal flora and an anaerobic filter. For the lagoon treatment, a hydraulic retention time of 7 days was used at biomass concentrations of 70, 350 and 480 mg TSS/l and 20-22°C. The fungal system was evaluated at retention times of 5.5 11 and 22 h, 770 mg TSS/l and 37°C. For the anaerobic filter, retention times of 1, 5 and 25 h at a temperature of 35°C were used. Very promising results were obtained with the combination of physical and biological treatment. The aerated lagoon with solids recycle gave the best results with 66% of AOX, 72% of COD and 95% of the BOD being removed in the combined process. The anaerobic filter also gave good results, but in practice a small aerobic post-treatment would probably be necessary. The three systems were also evaluated for the removal of chlorinated phenolic compounds and acute toxicity according to the Microtox test. The results suggest that a combination of membrane filtration and anaerobic/aerobic or just aerobic treatment would be an attractive way to handle kraft mill bleach plant effluents.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3