Microbial Degradation of Pentachlorophenol and Lindane in Laboratory-Scale Activated Sludge Reactors

Author:

Jacobsen B. N.1,Nyholm N.2,Pedersen B. M.1,Poulsen O.1,Østfeldt P.1

Affiliation:

1. Water Quality Institute, Agern Allé 11, DK-2970 Hørsholm, Denmark

2. Present address: Storstrøms Amtskommune, Parkvej 37, DK-4800 Nykøbing F, Denmark

Abstract

The microbial degradation of pentachlorophenol (PCP) and lindane in the activated sludge process was studied. 14 steady-state experimental runs were performed in single-stage activated sludge reactors under various operating conditions. PCP and lindane mixed with three other model compounds were added to the feed as secondary substrate, with synthetic sewage as primary substrate. Reactor concentrations (dissolved) of the model compounds were in the range of 1-200 µg/l. For PCP, the biodegradation increased with increasing solids retention time SRT. This indicates that degradation takes place by catabolic growth of a specific fraction of the biomass. At SRT > 8 days the 1st order biodegradation rate constant was about 2.5 × 10−3 1/(mg MLSS day) at a temperature of 15°C. For lindane, the reverse relation was observed. Increased degradation was observed with increasing degradation of primary substrate. This indicates the presence of other mechanisms such as co-metabolism or probably reductive dechlorination. In relation to upgrading of wastewater treatment plants to biological nutrient removal, xenobiotic compounds behaving like PCP are expected to be increasingly degraded. For compounds behaving like lindane, co-metabolic activity can be stimulated in plug-flow reactors rather than CSTR, and anaerobic zones in the activated sludge process may play an important role for the degradation.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3