Comparison of One-Phase and Two-Phase Anaerobic Digestion Processes in Characteristics of Substrate Degradation and Bacterial Population Levels

Author:

Cheng Zhang Tian1,Noike Tatsuya2

Affiliation:

1. Department of Environmental Engineering, Tsinghua University, Haidian, Beijing, China

2. Department of Civil Engineering, Tohoku University, Aoba, Sendai 980, Japan

Abstract

The comparison of one-phase and two-phase anaerobic digestion processes in the characteristics of substrate degradation and the bacterial population levels was investigated by using the chemostat-type reactors to which starch was fed as substrate when both processes were operated under the same experimental conditions. By decreasing the SRTs of both systems from 10.2 d to 5 d, 2.5 d and 1.75 d. it was found that the two-phase system was more stable to the change in pH than one-phase system. The CH4 recovery rates and COD removal rates in the two-phase system increased by 4 to 9% and 3 to 10%. respectively, although the CH4 recovery rate and the COD removal rate in the one-phase system were slightly higher than those in the two-phase system at the SRT of 10.2 d. The concentration of propionate in the effluent of the one-phase system was 30 to 50% higher than that in the two-phase system; while the concentrations of acetate and butyrate in the one-phase system were slightly lower than those in the two-phase one. The enumeration of the bacteria was performed by the MPN method. The population levels of acidogenic bacteria in both systems were in the same order (108 to 1010 MPN/ml). the population levels of hydrogenotrophs were also in the same order as the acidogenic bacteria in the two-phase system, while the population levels of hydrogenotrophs were 10 to 100 fold less than that of acidogenic bacteria in the one-phase system. The number of HAc-utilizing methanogens in the methanogenesis of the two-phase system were 2 to 10 times higher than that in the one-phase system. Therefore, the one-phase system cannot be regarded simply as the sum of acidogenesis and methanogenesis.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3