Affiliation:
1. 1 National Institute of Technology, Hamirpur, India
Abstract
Abstract
Knowledge of hydraulic conductivity (K) is inevitable for sub-surface flow and aquifer studies. Hydrologists and groundwater researchers are employing data-driven techniques to indirectly evaluate K using porous media characteristics as an alternative to direct measurement. The study examines the ability of the Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict the K of porous media using two membership functions (MFs), i.e., triangular and Gaussian, and support vector machine (SVM) via four kernel functions, i.e., linear, quadratic, cubic, and Gaussian. The techniques used easily measurable parameters namely effective and mean grain size, uniformity coefficient, and porosity as input variables. A 70 and 30% dataset is used for the training and testing of models, respectively. The correlation coefficient (R) and root mean square error (RMSE) were used to evaluate the models. The Gaussian MF-based ANFIS model outperformed the triangular model having R and RMSE values of 0.9661 & 0.0010 and 0.9532 & 0.0015, respectively, whereas the quadratic kernel-based SVM model with R and RMSE values of 0.9520 and 0.0015 performs better than the other SVM models. Based on the evaluation of ANFIS and SVM models, the study establishes the efficacy of the Gaussian MF-based ANFIS model in estimating the K of porous media.
Subject
Water Science and Technology
Reference35 articles.
1. Validity of Darcy's law in laminar regime;Alabi;Electronic Journal of Geotechnical Engineering,2011
2. Hydraulic conductivity of saturated soils: field methods;Amoozegar;Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods,1986
3. Odds and Ends on Finite Group Actions and Traces
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献