Estimation of hydraulic conductivity of porous media using data-driven techniques

Author:

Thakur Divya1ORCID,Chandel Abhishish1,Shankar Vijay1

Affiliation:

1. 1 National Institute of Technology, Hamirpur, India

Abstract

Abstract Knowledge of hydraulic conductivity (K) is inevitable for sub-surface flow and aquifer studies. Hydrologists and groundwater researchers are employing data-driven techniques to indirectly evaluate K using porous media characteristics as an alternative to direct measurement. The study examines the ability of the Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict the K of porous media using two membership functions (MFs), i.e., triangular and Gaussian, and support vector machine (SVM) via four kernel functions, i.e., linear, quadratic, cubic, and Gaussian. The techniques used easily measurable parameters namely effective and mean grain size, uniformity coefficient, and porosity as input variables. A 70 and 30% dataset is used for the training and testing of models, respectively. The correlation coefficient (R) and root mean square error (RMSE) were used to evaluate the models. The Gaussian MF-based ANFIS model outperformed the triangular model having R and RMSE values of 0.9661 & 0.0010 and 0.9532 & 0.0015, respectively, whereas the quadratic kernel-based SVM model with R and RMSE values of 0.9520 and 0.0015 performs better than the other SVM models. Based on the evaluation of ANFIS and SVM models, the study establishes the efficacy of the Gaussian MF-based ANFIS model in estimating the K of porous media.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference35 articles.

1. Validity of Darcy's law in laminar regime;Alabi;Electronic Journal of Geotechnical Engineering,2011

2. Hydraulic conductivity of saturated soils: field methods;Amoozegar;Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods,1986

3. Odds and Ends on Finite Group Actions and Traces

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3