Isolated pressure zones based on GIS as a solution for water network problems

Author:

Hariri Asli Kian1ORCID,Hariri Asli Kaveh2ORCID

Affiliation:

1. a Department of Electrical and Computer Engineering, Islamic Azad University Tehran North Branch, Tehran, Iran

2. b Department of Mechanical Engineering, Islamic Azad University Rasht Branch, Rasht, Iran

Abstract

Abstract One of the most important accidents for water transmission lines occur by air entrance due to water hammer into the water pipeline at sub-atmospheric transient pressure. The air can be sucked into the water system causing repeated pipe breaks in sub-atmospheric transient pressure. This work aimed to improve the advanced techniques including remote sensing (RS), and the internet of things (IoT) to control the repeated pipe breaks. According to the geospatial information systems (GIS), the relationship classes between the spatial and non-spatial data were defined for the scaled model. By GIS the location of pipe breaks and sucking air into water pipeline was recognized during fluid instabilities. The location of pipe breaks was defined by the numerical modelling based on GIS. According to numerical analysis, the Courant number was equal to 0.977. In the field test, the surge velocity was 1084 m/s. The pressure wave was detected in 0.005 s by RS facilities equipped with water hammer sensors, advanced modems, and data loggers referring to the IoT technique. The result of this work led to a reduction of the non-revenue water (NRW) and the saving of drinking water.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Remote Sensing (RS) and Domestic Consumption Improvers Equipment;Synthesis Lectures on Emerging Engineering Technologies;2024-08-06

2. Optimization of Fixtures Unit Consumption by Intelligent Data Monitoring Method;Synthesis Lectures on Emerging Engineering Technologies;2024-08-06

3. Advanced Technologies and Forecasting Models for Water Demand;Synthesis Lectures on Emerging Engineering Technologies;2024-08-06

4. Computational Modeling and Regression Analysis for Water Consumption Management;Synthesis Lectures on Emerging Engineering Technologies;2024-08-06

5. Implementation Water Loss by Smart Control Through the Internet of Things (IoT);Synthesis Lectures on Emerging Engineering Technologies;2024-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3