Assessment of inline technique-based water hammer control strategy in water supply systems

Author:

Ben Iffa Ridha1,Triki Ali2

Affiliation:

1. Higher Institute of Applied Sciences and Technology of Gabès; Research Unit: Energetic & Environment, National Engineering School of Tunis, University of Tunis El Manar, Tunis, Tunisia

2. Higher Institute of Applied Sciences and Technology of Gabès; Research Unit: Mechanics, Modelling Energy and Materials M2EM, National Engineering School of Gabès, University of Gabès, Tunisia

Abstract

Abstract This article discusses and compares the effectiveness of the compound and dual technique-based inline strategy used to upgrade existing steel pipe-based water supply systems. Basically, these techniques are based on splitting the single inline short section, used in the conventional technique, into a couple of two sub-short sections made of two distinct plastic material types: high- and low-density polyethylene (HDPE) and (LDPE). The 1D unconventional water hammer solver based on the method of characteristics was used for numerical computations. Results evidenced that the specific setup of the compound technique based on (HDPE-LDPE) sub-short sections (where the former sub-short section is attached to the hydraulic parts, while the latter is attached to the main steel pipe) is the most prominent configuration providing an acceptable trade-off between attenuation of pressure head surge, and limitation of excessive wave oscillation period spreading. Furthermore, this compound technique setup allowed more important pressure head peak (or crest) attenuation as compared with the dual technique based on (LDPE-LDPE) sub-short sections; while inducing about similar values of wave oscillation period spreading.

Publisher

IWA Publishing

Subject

Health, Toxicology and Mutagenesis,Water Science and Technology,Environmental Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3