Adsorption of Ni(II) by a thermo-sensitive colloid: methylcellulose/calcium alginate beads

Author:

Li Zhongmin1,Wu Wanwan1,Jiang Wenyan23,Wei Guangtao2,Li Yunshang2,Zhang Linye1

Affiliation:

1. Department of Energy Chemical Engineering, Guangxi University, Nanning, China

2. Department of Chemical Engineering, Guangxi University, Nanning, China

3. Agro-Products Quality, Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China

Abstract

Abstract The adsorption of Ni(II) by a thermo-sensitive adsorbent of methylcellulose/calcium alginate beads (CAMCBs) was studied using batch adsorption tests to determine the adsorption process and properties, the effects of adsorbent dosage, initial concentration, adsorption time and temperature. The adsorption process was further investigated using kinetics, isotherms and thermodynamic methods. The kinetics and isotherms studies showed the adsorption of Ni(II) on CAMCBs was fitted by the pseudo-second-order kinetic model and Langmuir isothermal adsorption model, respectively. The thermodynamic parameters indicated that the adsorption process was spontaneous and exothermic at lower temperature, and the entropy of the adsorption process was negative. In the study of regeneration, it was confirmed that under the temperature of 60 °C, the desorption agent of CaCl2 with concentration of 3 g·L−1 was more conducive to the desorption of Ni(II) from CAMCBs. Both adsorption capacity and mechanical strength of the used CAMCBs could be basically recovered to the level of fresh CAMCBs after desorption. The prepared CAMCBs had a good property of adsorption of Ni(II) and an excellent regeneration performance.

Funder

National Natural Science Foundation of China

Science and Technology Department of Guangxi Zhuang Autonomous

Ministry-province Jointly-constructed Cultivation Base for State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials in Guangxi Zhuang Autonomous Region

Publisher

IWA Publishing

Subject

Health, Toxicology and Mutagenesis,Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3