Evaluation of an instantaneous dryness index-based calibration-free continuous hydrological model in India

Author:

Patnaik Swagat1,Sharma Vimal Chandra1,Biswal Basudev2

Affiliation:

1. Department of Civil Engineering, Indian Institute Technology, Hyderabad, India

2. Department of Civil Engineering, Indian Institute Technology, Bombay, India and Interdisciplinary Programme (IDP) in Climate Studies, Indian Institute Technology, Bombay, India

Abstract

Abstract Traditional continuous hydrological models have a large number of free parameters whose values need to be determined through calibration, and thus their applicability is limited to gauged basins. For prediction in ungauged catchments, hydrologists generally follow regionalization methods to develop region-specific calibration-free continuous models. An alternative attempt was made recently to develop a calibration-free model by proposing an empirically derived universal ‘decay function’ that enables definition of instantaneous dryness index as a function of antecedent rainfall and solar energy. The model was earlier tested in the USA, and its performance was found to be comparable to that shown by regionalization-based models. Here, we test the instantaneous dryness index-based calibration-free model considering data from 108 Indian catchments. The medians of coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE) and Kling–Gupta efficiency (KGE) values for the study catchments, respectively, are 0.50, 0.38 and 0.40. Furthermore, the model's performance significantly improved upon Box–Cox transformation (RBC2, NSEBC and KGEBC, respectively, are 0.70, 0.52 and 0.57), suggesting that the model predicts discharge quite well except during flood periods. Overall, our results suggest the model can be used as an alternative platform for predicting discharge in ungauged catchments in the USA and peninsular India, if not in every part of the world.

Funder

Ministry of Human Resources Development

FAST Center of Excellence in Sustainable Urban Development, IIT Hyderabad

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference51 articles.

1. Seeking genericity in the selection of parameter sets: impact on hydrological model efficiency;Water Resources Research,2014

2. The use of the aridity index to assess climate change effect on annual runoff;Journal of Hydrology,2002

3. Global-scale regionalization of hydrologic model parameters;Water Resources Research,2016

4. Modeling water supply and demand scenarios: the Godavari–Krishna inter-basin transfer, India;Water Policy,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3