Response of soil water hydrochemistry and δ13CDIC to changes in spatio-temporal variations under different land covers in SW China karst catchment

Author:

Wang Peng12,Shen Licheng1,Chen Xiaohong3,Wang Zhijun4,Liang Xuan1,Hu Bill X.2,Lan Jiacheng5,Zhai Xinxin1

Affiliation:

1. Chongqing Key Laboratory of Karst Environment, Chongqing 400715, China

2. Institute of Groundwater and Earth Sciences, Jinan University, Guangzhou 510632, China

3. Center for Water Resources and Environment, Sun Yat-sen University, Guangzhou 510275, China

4. Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541000, China

5. School of Karst Science, Guizhou Normal University, Guizhou 550000, China

Abstract

Abstract Soil water plays a crucial role in biogeochemical processes within karst ecosystems. However, geochemical variations of soil waters under different land covers and the related karst critical zone processes are still unclear. In this study, five land covers, including grassland, dry land, shrub land, reforestation land, and bamboo land in the Qingmuguan karst area of Chongqing Municipality, Southwest (SW) China were investigated in order to better understand the spatio-temporal variations of soil water geochemistry and its controlling mechanisms. The hydrochemistry of soil water and stable carbon isotopic compositions of dissolved inorganic carbon (δ13CDIC) in soil water were analyzed by a semi-monthly sampling strategy. The results show that there is remarkable spatio-temporal variation in the hydrochemistry and δ13CDIC of soil waters under different land covers in the studied area. Soil waters collected from shrub, dry, and afforestation lands have higher total dissolved solids (TDS), Ca2+, and HCO3− concentrations and heavier δ13CDIC, which is probably associated with the stronger carbonate dissolution caused by higher soil CO2 and carbonate content in soils under these land covers. However, lower TDS, Ca2+, and HCO3− concentrations as well as δ13CDIC values but higher SO42− concentrations are found in soil waters collected from bamboo land and grassland. The reason is that higher gypsum dissolution or oxidation of sulfide minerals and less soil CO2 input occurs in soils under these two land covers. Under the shrub, dry, and afforestation lands, higher concentrations of Ca2+ and HCO3− in soil waters occur in rainy seasons than in dry seasons, which are probably linked to higher CO2 input due to stronger microbial activities and root respiration in the wet summer seasons. In addition, seasonal variations of NO3− concentrations in soil waters from the dry land are observed, and much higher NO3− concentration occurs in the rainy seasons than that in the dry seasons, which suggest that the agricultural fertilization may lead to high NO3− in soil water. On the vertical soil profile, except for the bamboo land, soil waters under different land covers commonly show an increasing trend of main ion concentrations with the increase of depth. This vertical variation of hydrochemistry and δ13CDIC values in soil waters is primarily controlled by the intensity of carbonate dissolution related to carbonate content in soils and soil CO2 production. The soil waters under different land covers have great variations in δ13CDIC values which ranged from −20.68‰ to −6.90‰. Also, the [HCO3−]/([Ca2+] + [Mg2+]), [NO3−]/[HCO3−], and [SO42−]/([Ca2+] + [Mg2+]) molar ratios in soil waters show a large amplitude of variation. This suggested that carbonic acids could not be a unique dissolving agent and sulfuric/nitric acids may play a role in the weathering of carbonate in the Qingmuguan karst area.

Funder

Open Project Program of Chongqing Key Laboratory of Karst Environment

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference61 articles.

1. Seasonal variations of dissolved inorganic carbon and δ13C of surface waters: application of a modified gas evolution technique;Journal of Hydrology,1998

2. Response of root respiration to changes in temperature and its relevance to global warming;The New Phytologist,2000

3. Use of δ13C to trace origin and cycling of inorganic carbon in the Rhône river system;Chemical Geology,1999

4. On the isotopic composition of carbon in soil carbon dioxide;Geochimica et Cosmochimica Acta,1991

5. Analysis of soil water movement inside a foot slope and a depression in a karst catchment, Southwest China;Scientific Reports,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3