Integration of hillslope hydrology and 2D hydraulic modelling for natural flood management

Author:

Hankin Barry1,Metcalfe Peter1,Beven Keith1,Chappell Nick A.1

Affiliation:

1. Visiting Researcher, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA14YW, UK

Abstract

Abstract Natural flood management (NFM) has recently invigorated the hydrological community into redeploying its process understanding of hydrology and hydraulics to try to quantify the impacts of many distributed, ‘nature-based’ measures on the whole-catchment response. Advances in spatial data analysis, distributed hydrological modelling and fast numerical flow equation solvers mean that whole-catchment modelling including computationally intensive uncertainty analyses are now possible, although perhaps the community has not yet converged on the best overall parsimonious framework. To model the effects of tree-planting, we need to understand changes to wet canopy evaporation, surface roughness and infiltration rates; to model inline storage created by ‘leaky barriers’ or offline storage, we need accurate channel hydraulics to understand the changes to attenuation; to model the complex behaviour of the whole network of NFM measures, and the possibility of flood peak synchronisation effects, we need efficient realistic routing models, linked to key flow pathways that take into account the main physical processes in soils and the antecedent moisture conditions for a range of different rainfall events. This paper presents a new framework to achieve this, based on a cascade of the Dynamic Topmodel runoff generation model and the JFlow or HEC-RAS 2D hydraulic models, with an application to the Swindale Catchment in Cumbria, UK. We demonstrate the approach to quantify both the effectiveness of a relatively large ‘runoff attenuation feature’ in the landscape and the uncertainty in the calculation given model parameter uncertainty.

Funder

Natural Environment Research Council

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference35 articles.

1. An assessment of engineered log jam structures in response to a flood event in an upland gravel-bed river;Earth Surface Processes and Landforms,2016

2. Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data;Advances in Water Resources,1998

3. A manifesto for the equifinality thesis;Journal of Hydrology,2006

4. The future of distributed models: model calibration and uncertainty prediction;Hydrological Processes,1992

5. GLUE: 20 years on;Hydrological Processes,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3