High-performance computing in water resources hydrodynamics

Author:

Morales-Hernández M.12,Sharif M. B.3,Gangrade S.24,Dullo T. T.5,Kao S.-C.24,Kalyanapu A.5,Ghafoor S. K.3,Evans K. J.12,Madadi-Kandjani E.6,Hodges B. R.6

Affiliation:

1. Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

2. Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

3. Department of Computer Science, Tennessee Technological University, Cookeville, TN 38505, USA

4. Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

5. Department of Civil and Environmental Engineering, Tennessee Technological University, Cookeville, TN 38505, USA

6. National Center for Infrastructure Modeling and Management, University of Texas at Austin, Austin, TX 78758, USA

Abstract

Abstract This work presents a vision of future water resources hydrodynamics codes that can fully utilize the strengths of modern high-performance computing (HPC). The advances to computing power, formerly driven by the improvement of central processing unit processors, now focus on parallel computing and, in particular, the use of graphics processing units (GPUs). However, this shift to a parallel framework requires refactoring the code to make efficient use of the data as well as changing even the nature of the algorithm that solves the system of equations. These concepts along with other features such as the precision for the computations, dry regions management, and input/output data are analyzed in this paper. A 2D multi-GPU flood code applied to a large-scale test case is used to corroborate our statements and ascertain the new challenges for the next-generation parallel water resources codes.

Funder

U.S. Air Force

U.S. Environmental Protection Agency

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Reference29 articles.

1. The h, p and h-p version of the finite element method: basis theory and applications;Advances in Engineering Software,1992

2. Optimizing I/O performance of HPC applications with autotuning;ACM Trans. Parallel Comput.,2019

3. Efficient shallow water simulations on GPUs: implementation, visualization, verification, and validation;Computers & Fluids,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3