A reduced-order model for the regeneration of surface currents in Gorgan Bay, Iran

Author:

Kheirabadi Hassan1,Noori Roohollah2,Samani Jamal M. V.1,Adamowski Jan Franklin3,Ranjbar Mohammad Hassan2,Zaker Naser Hajizadeh2

Affiliation:

1. Water Structures Department, Tarbiat Modares University, Tehran, Iran

2. Graduate Faculty of Environment, University of Tehran, Tehran, Iran

3. Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada

Abstract

Abstract This study developed a hydrodynamic reduced-order model (ROM) to regenerate surface currents in Gorgan Bay, Iran. The developed ROM was based on linking a three-dimensional hydrodynamic model, MIKE3-FM, with a data reduction technique, proper orthogonal decomposition (POD). The MIKE3-FM model was first run to simulate surface currents in the bay under a real wind scenario for two years starting July 1, 2010. Thereafter, time and space steps of 6 hours and 500 m, respectively, were chosen to capture 2,920 snapshots of the simulated surface currents using the MIKE3-FM model on 1,937 grids in the bay. The snapshots were then used as input for the POD model to develop the ROM. By applying the POD on the snapshots, necessary spatial and temporal components of surface currents used to develop the ROM were calculated. Having spatial and temporal terms, two ROMs for regeneration of surface currents U and V in two directions x and y, respectively, were developed. Analysis of ROM results revealed they accurately regenerated surface currents using only the first ten modes (among 2,920 modes). Comparison of MIKE3-FM and ROMs developed by the first ten modes revealed there were only negligible differences between their results when they simulated and regenerated, respectively, U and V, in the bay.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3