Sewer sediment deposition prediction using a two-stage machine learning solution

Author:

Ribalta Gené Marc12ORCID,Béjar Ramón2ORCID,Mateu Carles2ORCID,Corominas Lluís34ORCID,Esbrí Oscar5,Rubión Edgar1ORCID

Affiliation:

1. a Eurecat, Technology Centre of Catalonia, Unit of Applied Artificial Intelligence, Bilbao 72, Barcelona 08005, Spain

2. b University of Lleida, Jaume II, 69, Lleida 25001, Spain

3. c Catalan Institute for Water Research (ICRA-CERCA), Emili Grahit 101, Girona 17002, Spain

4. d University of Girona, Plaça de Sant Domènec, 3, Girona 17004, Spain

5. e Barcelona Cicle de l'Aigua, 08038 Barcelona, Spain

Abstract

ABSTRACT Sediment accumulation in the sewer is a source of cascading problems if left unattended and untreated, causing pipe failures, blockages, flooding, or odour problems. Good maintenance scheduling reduces dangerous incidents, but it also has financial and human costs. In this paper, we propose a predictive model to support the management of maintenance routines and reduce cost expenditure. The solution is based on an architecture composed of an autoencoder and a feedforward neural network that classifies the future sediment deposition. The autoencoder serves as a feature reduction component that receives the physical properties of a sewer section and reduces them into a smaller number of variables, which compress the most important information, reducing data uncertainty. Afterwards, the feedforward neural network receives this compressed information together with rain and maintenance data, using all of them to classify the sediment deposition in four thresholds: more than 5, 10, 15, and 20% sediment deposition. We use the architecture to train four different classification models, with the best score from the 5% threshold, being 82% accuracy, 70% precision, 76% specificity, and 88% sensitivity. By combining the classifications obtained with the four models, the solution delivers a final indicator that categorizes the deposited sediment into clearly defined ranges.

Funder

Horizon 2020 Framework Programme

Agència de Gestió d'Ajuts Universitaris i de Recerca

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3