Scale effects and implications of the stochastic structure of customer water demands

Author:

Díaz Sarai1ORCID,González Javier1ORCID,Lansey Kevin2ORCID,Pointl Michael3ORCID

Affiliation:

1. a Department of Civil Engineering, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain

2. b Department of Civil and Architectural Engineering and Mechanics, The University of Arizona, Tucson, AZ 85704, USA

3. c Graz University of Technology, Stremayrgasse 10/I, 8010 Graz, Austria

Abstract

ABSTRACT The effect of different temporal (from seconds to months) and spatial aggregation scales (from individual users to full urban areas) on water demand behavior has been explored to a limited degree. The effort described here extends those works by evaluating the scale effects of residential water consumption in a unique US data set that covers 10,000 households with a 1-gallon (3.79 L) hourly resolution over 2 years. A preliminary data analysis and a sequential Principal Component Analysis (PCA) is carried out to assess the effect of different temporal (weekly, daily, hourly) and spatial aggregation (individual meters and groups every 10, 100 and 1,000 meters) levels on demand. Results show that individual users act very differently from each other, and individual consumer variability is only canceled out when a significant number of households are aggregated. The implications of this finding are assessed from a hydraulic modeling perspective as the spatiotemporal scale of measurements may condition the type of analysis that can be carried out in practice. However, additional work is needed to explore the point at which it may be worth embracing a micro (per fixture/household) or a macro (per node/network) approach for different purposes.

Funder

Ministerio de Universidades

Marshallplan-Jubiläumsstiftung

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3