Automatic calibration of SWMM parameters based on multi-objective optimisation model

Author:

Wang Tao1ORCID,Zhang Longlong1,Zhai Jiaqi1ORCID,Wang Lizhen12,Zhao Yifei13,Liu Kuan14

Affiliation:

1. a State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

2. b School of Civil Engineering and Water Resources, Qinghai University, Xining 810016, China

3. c Beijing IWHR Technology Co. Ltd, China Institute of Water Resources and Hydropower Research, Beijing 10038, China

4. d State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China

Abstract

Abstract To address the issue of low accuracy and inefficiency in the traditional parameter calibration methods for the SWMM model, this paper constructs an automatic parameter calibration model based on multi-objective optimisation algorithms. Firstly, the Sobol method and GLUE method are utilised to determine sensitive parameters and their ranges, aiming to narrow down the solution space and expedite the model-solving speed. Secondly, the NSGA-3 multi-objective optimisation algorithm based on the Pareto theory is applied for the optimisation and calibration of sensitive parameter sets. The model is validated in the rainwater drainage system with independent runoff in a residential area in a northwestern city in China. The results show that parameters such as N-Imperv and KSlope are highly sensitive to the model output under the land-use conditions of the study area. The simulation accuracy of the multi-objective continuous optimisation algorithm is significantly better than that of the single-objective genetic algorithm. The simulation results of the SWMM model under multi-objective optimisation demonstrate a certain level of reliability and stability. The research findings can provide technical support for the automatic calibration of SWMM model parameters, accurate model simulation, and application.

Funder

This work was supported by National Key Research and Development Program Projects for the 14th Five-Year Plan

National Natural Science Foundation Projects

Free Exploration Project of the State Key Laboratory of Watershed Water Cycle Simulation and Regula-tion

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3