Logistic regression analysis to estimate contaminant sources in water distribution systems

Author:

Liu Li1,Sankarasubramanian A.2,Ranjithan S. Ranji2

Affiliation:

1. School of Civil Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China

2. Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695, USA

Abstract

Accidental or intentional contamination in a water distribution system (WDS) has recently attracted attention due to the potential hazard to public health and the complexity of the contaminant characteristics. The accurate and rapid characterization of contaminant sources is necessary to successfully mitigate the threat in the event of contamination. The uncertainty surrounding the contaminants, sensor measurements and water consumption underscores the importance of a probabilistic description of possible contaminant sources. This paper proposes a rapid estimation methodology based on logistic regression (LR) analysis to estimate the likelihood of any given node as a potential source of contamination. Not only does this algorithm yield location-specific probability information, but it can also serve as a prescreening step for simulation–optimization methods by reducing the decision space and thus alleviating the computational burden. The applications of this approach to two example water networks show that it can efficiently rule out numerous nodes that do not yield contaminant concentrations to match the observations. This elimination process narrows down the search space of the potential contamination locations. The results also indicate that the proposed method efficiently yields a good estimation even when some noise is incorporated into the measurements and demand values at the consumption nodes.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3