Affiliation:
1. 1 Department of Civil Engineering, University of Seoul, Seoul 02504, Republic of Korea
Abstract
AbstractThe traditional instantaneous unit hydrograph (IUH) is very useful for theoretical analysis and practical forecasting of floods owing to its linear assumptions. Although various revised methods to overcome the unphysical assumptions have been proposed, it is still difficult to obtain efficiently a nonlinear IUH of diverse rainfall excess intensities in a watershed. In this study, we proposed practical and physical interpolation techniques to derive new IUHs from at least two existing IUHs corresponding to diverse rainfall excess intensities in a watershed. To interpolate the new IUHs, mass conservation law and power–law relationships between rainfall excess intensities and the peak flow and time to peak of IUHs were used. By employing convolution integration, surface rainfall–runoff hydrographs for timely varying rainfall events were derived. For verification, we applied the proposed technique to three real watersheds with different sizes ranging from 0.036 to 1,047 km2. All flood prediction procedures were completed instantly, stably and the prediction results showed the accuracy of Nash–Sutcliffe efficiency (NSE) = 0.55–0.93 and coefficient of determination (R2) = 0.72–0.94.
Funder
National Research Foundation of Korea (NRF) grant funded by the Korea government
Subject
Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献