The extrapolation of artificial neural networks for the modelling of rainfall—runoff relationships

Author:

Hettiarachchi P.1,Hall M. J.2,Minns A. W.3

Affiliation:

1. Office of the Deputy Director of Irrigation, Kaluwella, Galle, Sri Lanka

2. UNESCO-IHE Institute for Water Education, POB 3015, 2601 DA, Delft, The Netherlands

3. WL | Delft Hydraulics, POB 177, 2600 MH, Delft, The Netherlands,

Abstract

The last decade has seen increasing interest in the application of Artificial Neural Networks (ANNs) for the modelling of the relationship between rainfall and streamflow. Since multi-layer, feed-forward ANNs have the property of being universal approximators, they are able to capture the essence of most input–output relationships, provided that an underlying deterministic relationship exists. Unfortunately, owing to the standardisation of inputs and outputs that is required to run ANNs, a problem arises in extrapolation: if the training data set does not contain the maximum possible output value, an unmodified network will be unable to synthesise this peak value. The occurrence of high magnitude, low frequency events within short periods of record is largely fortuitous. Therefore, the confidence in the neural network model can be greatly enhanced if some methodology can be found for incorporating domain knowledge about such events into the calibration and verification procedure in addition to the available measured data sets. One possible form of additional domain knowledge is the Estimated Maximum Flood (EMF), a notional event with a small but non-negligible probability of exceedence. This study investigates the suitability of including an EMF estimate in the training set of a rainfall–runoff ANN in order to improve the extrapolation characteristics of the network. A study has been carried out in which EMFs have been included, along with recorded flood events, in the training of ANN models for six catchments in the south west of England. The results demonstrate that, with prior transformation of the runoff data to logarithms of flows, the inclusion of domain knowledge in the form of such extreme synthetic events improves the generalisation capabilities of the ANN model and does not disrupt the training process. Where guidelines are available for EMF estimation, the application of this approach is recommended as an alternative means of overcoming the inherent extrapolation problems of multi-layer, feed-forward ANNs.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3