Hydrodynamics of laminar pipe flow through an extended partial blockage by CFD

Author:

Martins Nuno M. C.12ORCID,Covas Dídia I. C.2ORCID,Meniconi Silvia1ORCID,Capponi Caterina1ORCID,Brunone Bruno1ORCID

Affiliation:

1. a Department of Civil and Environmental Engineering, The University of Perugia, Perugia, Italy

2. b CERIS, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

Abstract

Abstract In this paper, an advanced three-dimensional (3D) computational fluid dynamics (CFD) model is used to analyse the steady-state hydrodynamics of laminar flow through an extended partial blockage (PB) in a pressurised pipe. PB corresponds to one of the main faults affecting pipelines. In fact, it reduces its carrying capacity with economic consequences, and as it does not give rise to any external evidence, its detection can be very challenging. The performance of the model is evaluated by comparing the numerical results with the available experimental data from the literature. Subsequently, the velocity and pressure distributions are analysed, and the main features of the flow field are described in terms of both local and global dimensionless parameters. Furthermore, the behaviour of the discharge coefficient is also investigated. The obtained results confirm that steady-state measurements can identify the presence of PB and follow its evolution over time but cannot detect its location and size. On the other hand, the location and severity of PBs can be provided by means of transient tests.

Funder

Fundação para a Ciência e a Tecnologia

Università degli Studi di Perugia

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3