Distribution of mean flow and turbulence statistics in plunge pools

Author:

Castillo Luis G.1,Carrillo José M.1,Bombardelli Fabián A.2

Affiliation:

1. Department of Civil Engineering, Universidad Politécnica de Cartagena, UPCT Paseo Alfonso XIII, 52, Cartagena 30203, Spain

2. Department of Civil and Environmental Engineering, University of California, Davis, 2001 Ghausi Hall, One Shields Ave., Davis, CA 95616, USA

Abstract

When the capacity of the spillway of a dam is exceeded for a given flood, overtopping occurs; in such cases potentially dangerous hydrodynamic actions and scour downstream of the dam need to be foreseen. Detailed studies of jets impinging in plunge pools from overflow nappe flows are scarce. This work addresses plunge pool flows, and compares numerical results against our own experiments. The energy dissipation is larger than 75% of the impingement jet energy. Instantaneous velocities and air entrainment were obtained with the use of an Acoustic Doppler Velocimeter and optical fibre probe, respectively. Mean velocity field and turbulence kinetic energy profiles were determined. To identify the level of reliability of models, numerical simulations were carried out by using the ‘homogeneous’ model of ANSYS CFX, together with different turbulence closures. The numerical results fall fairly close to the values measured in the laboratory, and with expressions for submerged hydraulic jumps and horizontal wall jets. The observations can be well predicted for characterized profiles at a minimum distance of 0.40 m downstream from the stagnation point, horizontal velocities greater than 40% of the maximum velocity in each profile, and when the ratio of the water cushion depth to the jet thickness is lower than 20.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Reference48 articles.

1. Discussion of ‘Two-phase flow characteristics of stepped spillways’ by Robert M. Boes and Willi H. Hager;André;J. Hydraul. Eng.,2005

2. Fiber-optical experimentation in two-phase cascade flow;Boes,1998

3. Two-phase flow characteristics of stepped spillways;Boes;J. Hydraul. Eng.,2003

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3