Numerical analysis of coupled hydrosystems based on an object-oriented compartment approach

Author:

Kolditz Olaf1,Delfs Jens-Olaf1,Bürger Claudius2,Beinhorn Martin2,Park Chan-Hee3

Affiliation:

1. Geohydrology and Hydroinformatics, Center for Applied Geoscience, University of Tübingen, Tübingen, D-72076, Germany and Environmental Informatics, Helmholtz Center for Environmental Research - UFZ, 04318, Leipzig, Germany

2. Geohydrology and Hydroinformatics, Center for Applied Geoscience, University of Tübingen, Tübingen, D-72076, Germany

3. Environmental Informatics Helmholtz, Center for Environmental Research - UFZ, 04318, Leipzig, Germany

Abstract

In this paper we present an object-oriented concept for numerical simulation of multi-field problems for coupled hydrosystem analysis. Individual (flow) processes modelled by a particular partial differential equation, i.e. overland flow by the shallow water equation, variably saturated flow by the Richards equation and saturated flow by the groundwater flow equation, are identified with their corresponding hydrologic compartments such as land surface, vadose zone and aquifers, respectively. The object-oriented framework of the compartment approach allows an uncomplicated coupling of these existing flow models. After a brief outline of the underlying mathematical models we focus on the numerical modelling and coupling of overland flow, variably saturated and groundwater flows via exchange flux terms. As each process object is associated with its own spatial discretisation mesh, temporal time-stepping scheme and appropriate numerical solution procedure. Flow processes in hydrosystems are coupled via their compartment (or process domain) boundaries without giving up the computational necessities and optimisations for the numerical solution of each individual process. However, the coupling requires a bridging of different temporal and spatial scales, which is solved here by the integration of fluxes (spatially and temporally). In closing we present three application examples: a benchmark test for overland flow on an infiltrating surface and two case studies – at the Borden site in Canada and the Beerze–Reusel drainage basin in the Netherlands.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3