Analyzing the role of consumer behavior in coping with intermittent supply in water distribution systems

Author:

Abhijith Gopinathan R.1ORCID,Naidu Maddukuri Naveen1ORCID,Boindala Sriman Pankaj2ORCID,Vasan A1,Ostfeld Avi2ORCID

Affiliation:

1. a Department of Civil Engineering, BITS Pilani Hyderabad Campus, Hyderabad, Telangana, India

2. b Faculty of Civil and Environmental Engineering, Technion – Israel Institute of Technology, Haifa, Israel

Abstract

Abstract A substantial number of water distribution systems (WDS) worldwide are operated as intermittent water supply (IWS) systems, delivering water to consumers in irregular and unreliable manners. The IWS consumers commonly adapt to flexible consumption behaviors characterized by storing the limited water available during shorter supply periods in intermediate storage facilities for subsequent usage during more extended nonsupply periods. Nevertheless, the impacts of such consumer behavior on the performance of IWS systems have not been adequately addressed. Toward this direction, this article presents a novel open-source Python-based simulation tool (EPyT-IWS) for WDS, virtually acting like an IWS modeling extension of EPANET 2.2. The applicability of EPyT-IWS was demonstrated by conducting hydraulic simulations of a typical WDS with representative IWS attributes. Different IWS operation cases were considered by varying the amount and consistency of the water availability to the consumers. EPyT-IWS outputs showed that domestic storage of water within underground tanks and subsequent pumping into overhead tanks allows consumers to cope with the intermittent water availability and suitably meet their demands. Besides the interval, the clock time of the water supply was predicted to influence IWS consumers’ ability to meet water demands.

Funder

Ministry of Science & Technology of the State of Israel

Federal Ministry of Education and Research (BMBF), Germany

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Developing a PDA Head–Outflow Relationship from a Microscale Analysis;Journal of Water Resources Planning and Management;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3