Decision support system for predicting tsunami characteristics along coastline areas based on database modelling development

Author:

Hadihardaja Iwan K.1,Latief Hamzah2,Mulia Iyan E.1

Affiliation:

1. Water Resources Engineering Research Division, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Indonesia, Jl. Ganesha No.10, Bandung 40132, West Java, Indonesia

2. Oceanography Research Division, Faculty of Sciences and Mineral Technology, Institut Teknologi Bandung, Indonesia, Jl. Ganesha No.10, Bandung 40132, West Java, Indonesia

Abstract

Tsunamis are extraordinary occurrences that are difficult to identify; most of the incidents have no recorded predictions and tsunamis are generally infrequent events with poor data acquisition. The development of a tsunami database system has become important for improving the management of information with regard to a tsunami early warning system for vulnerable communities along coastline areas. Numerical modelling is usually employed to simulate the wave height and travel time of a wave arriving at a coastline area. However, numerical modelling for tsunami prediction is too time-consuming to be useful as an early warning system for the mitigation of tsunami-related damage and loss. Therefore, this model was used to develop a tsunami database system, based on hypothetical data, in order to develop a recognition pattern for a neural network learning process that will improve the speed and accuracy of tsunami prediction. To improve the accuracy of numerical modelling and observation, an adjustment was established for an advanced training process which used a generalised regression neural network. In other words, the training and testing datasets were obtained by correcting near-field tsunami numerical models from hypothetical earthquakes. The case study was performed on part of the Southern Pangandaran coastline in West Java, Indonesia.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3