The effects of flow pulses on river plumes in the Yellow River Estuary, in spring

Author:

Fan Yaoshen1,Zhang Shaohua1,Du Xiaokang1,Wang Guangzhou1,Yu Shoubing1,Dou Shentang1,Chen Shenliang2,Ji Hongyu2,Li Ping3,Liu Fucheng4

Affiliation:

1. a Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan Province 450003, China

2. b State Key Laboratory of Estuarine and Coastal Science, East China Normal University, Shanghai 200241, China

3. c First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao, Shandong Province 266061, China

4. d School of Marine Technology and Geomatics, Jiangsu Ocean University, Lianyungang 222005, China

Abstract

Abstract In this paper, an extended three-dimensional (3D) model of the Yellow River Estuary (YRE) is established. It is based on a Delft 3D shallow-water high-resolution hydrodynamic model. The model is calibrated and verified by field observation data, which ensures its stability and accuracy, and provides a better simulation of the river plume in the estuary under different flow inputs. Since 2009, the spring flow pulse of the Yellow River can be divided into four types. The strong flow pulse is more conducive to the extension of the low salinity zone (LSZ). Doubling the peak discharge of pulse flow increases the LSZ area by 60%. The retardation time of salinity change in response to the flow pulse in estuary waters is weakly affected by the flow pulse intensity. The difference in shear front between the spring tide and the neap tide is the main dynamic mechanism contributing to the different retardation times. The average retardation time is 73 h during the spring tide and 55 h during the neap tide. In order to reduce the estuary salinity, it is suggested that the optimal time for the peak value of flow pulse in the river mouth is during the neap tide.

Funder

Key projects of the Yellow River Water Science joint fund of the National Natural Science Foundation of China

General program of National Natural Science Foundation of China

Basic Scientific Research Project of YRIHR

National Natural Science Foundation of Shandong Province

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3