Data pre-processing and artificial neural networks for tidal level prediction at the Pearl River Estuary

Author:

Liang Bing-Xian1,Hu Jin-Peng2,Liu Cheng3,Hong Bo1

Affiliation:

1. South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, Guangdong Province 510641, China

2. Department of Harbor, Coastal and Offshore Engineering, Jimei University, 185 Yinjiang Road, Jimei District, Xiamen, Fujian Province 361021, China

3. The Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission, 80 Tianshou Road, Tianhe District, Guangzhou, Guangdong Privince 510611, China

Abstract

Abstract Traditionally, tidal level is predicted by harmonic analysis (HA). In this paper, three hybrid models that couple varied pre-processing methods, which are empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), and empirical wavelet transform (EWT), with the nonlinear autoregressive networks with exogenous inputs (NARX) were applied to forecast tidal level. The models were, namely, EMD-NARX, EEMD-NARX, and EWT-NARX. The sub-series obtained by using EMD or EEMD or EWT were then used as the input vectors to the NARX with the original data as targets. Notably, the EWT-NARX model was employed to predict the tidal level for the first time. Simulations were based on the measurements from four tidal stations at the Pearl River Estuary, China. The results showed that the EWT-NARX, EEMD-NARX, and EMD-NARX outperformed the HA model. Specifically, EWT-NARX was optimal among the four. Moreover, from the Hilbert energy spectra we can see the EWT solved the mode-mixing problem that EMD and EEMD suffered from, thus enabling precise tidal level prediction. Simulations and experimental results confirmed that the EWT-NARX model can achieve prediction of the tidal level with high accuracy.

Funder

Natural Science Foundation of Guangdong Province

Scientific Research Foundation for Key Teacher of Jimei University

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3