Application of real-time water temperature prediction system in winter for long-distance water diversion projects

Author:

Xu Zepeng1,Liu Mengkai12,Huang Minghai3,Wen Letian4,Guo Xinlei25

Affiliation:

1. a School of Management, Wuhan University of Science and Technology, Wuhan 430065, China

2. b Key Laboratory of River Basin Digital Twinning of Ministry of Water Resources, Beijing 100038, China

3. c Changjiang River Scientific Research Institute, Wuhan 430010, China

4. d China South-to-North Water Diversion Middle Route Corporation Limited, Beijing 100038, China

5. e China Institute of Water Resources and Hydropower Research, Beijing 100038, China

Abstract

ABSTRACT Water diversion projects in high-latitude areas often reduce the risk of ice jams in winter by reducing the water transfer flow, which might cause the waste of water transfer benefits. This paper establishes a real-time prediction system of water temperature in winter, which can predict the change in water temperature by inputting the air temperature forecast data and the current hydraulic data. Taking the middle route of the south-to-north water diversion project as the background, the model parameters calibration and system application testing at different time periods are carried out. The results show that the prediction errors of water temperature for the 1 and 7 days are relatively small, and the prediction errors of water temperature at four observation stations can be controlled within ±0.3 and ±0.6 °C, with the root mean square error (RMSE) ranging from 0.07 to 0.25 and 0.12 to 0.36, respectively. The 15-day water temperature prediction results are greatly affected by air temperature input conditions. The prediction errors for the first 7 days are relatively small, ranging from −0.59 to 0.36 °C, and the errors for the last 8 days increase as the accuracy of the air temperature forecast decreases, ranging from −2.42 to 0.22 °C.

Funder

National Key Research & Development Plan of China

Open Research Fund of Key Laboratory of River Basin Digital Twinning of Ministry of Water Resources

National Science Foundation of China

Graduate Innovation and Entrepreneurship Foundation of Wuhan University of Science and Technology

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3