Comparison of viscoelastic models with a different number of parameters for transient simulations

Author:

Ferrante M.1,Capponi C.1

Affiliation:

1. Dipartimento di Ingegneria Civile ed Ambientale, University of Perugia, Via G. Duranti, 93, 06125 Perugia, Italy

Abstract

Abstract The numerical and analytical models used for transient simulations, and hence for the pressurized pipe system diagnosis, require the definition of a rheological component related to the pipe material. The introduction and the following widespread use of polymeric material pipes, characterized by a viscoelastic behavior, increased the complexity and the number of parameters involved in this component with respect to metallic materials. Furthermore, since tests on specimens are not reliable, a calibration procedure based on transient test is required to estimate the viscoelastic parameters. In this paper, the trade-off between viscoelastic component accuracy and simplicity is explored, based on the Akaike criterion. Several aspects of the calibration procedure are also examined, such as the use of a frequency domain numerical model and of different standard optimization algorithms. The procedure is tested on synthetic data and then it is applied to experimental data, acquired during transients on a high density polyethylene pipe. The results show that the best model among those used for the considered system implements the series of a spring with three Kelvin–Voigt elements.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Reference44 articles.

1. Approximate Bayesian computation in population genetics;Genetics,2002

2. Experimental validation of the admittance matrix method on a y-system;Journal of Hydraulic Research,2017

3. Leak detection in a branched system by inverse transient analysis with the admittance matrix method;Water Resources Management,2017

4. Numerical study on accuracy of frequency-domain modeling of transients;Journal of Hydraulic Research,2017

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3