Estimating critical depth and discharge over sloping rough end depth using machine learning

Author:

Mohammed Ahmed Y.1ORCID,Sihag Parveen2ORCID

Affiliation:

1. a Dams and Water Resources Engineering Department, College of Engineering, University of Mosul, Mosul, Iraq

2. b Civil Engineering Department, Chandigarh University, Mohali, Punjab, India

Abstract

Abstract This study uses machine learning (ML) to predict the end-depth structure's discharge and critical depth (yc). Linear regression, M5P, random forest, random tree, reduced error pruning tree, and Gaussian process (GP) are the ML methods used in this investigation. The findings indicate that the radial kernel function-based GP model is most suitable compared to other applied models with the lowest root-mean-square error = 0.0021, 0.007, normalized root-mean-square error = 0.0361, 0.0516 representing mean absolute error = 0.0015, 0.004 and the highest coefficient of correlation = 0.9912, 0.9916, Legates and McCabe's index = 0.8839, 0.9026 Willmott's index = 0.9956, 0.9956, and Nash Sutcliffe model efficiency = 0.9823, 09830 for yc for the end-depth structure (yc) and discharge (Q) with the testing stage, respectively. Results of the sensitivity study indicate that the friction coefficient is the most significant input variable compared to other parameters for predicting (yc) and flow running via the thickness model's last stage (Q) using this dataset.

Publisher

IWA Publishing

Reference39 articles.

1. The Continuum Random Tree. I

2. Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles

3. Comparative analysis of random forest, REP tree and J48 classifiers for credit risk prediction;Devasena;International Journal of Computer Applications,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3