Pattern matching and associative artificial neural networks for water distribution system time series data analysis

Author:

Mounce S. R.1,Mounce R. B.1,Jackson T.2,Austin J.2,Boxall J. B.1

Affiliation:

1. Pennine Water Group, Department of Civil and Structural Engineering, University of Sheffield, Sheffield, S1 3JD, UK

2. Advanced Computer Architecture Group, Department of Computer Science, University of York, Deramore Lane, York, YO10 5GH, UK

Abstract

Water distribution systems, and other infrastructures, are increasingly being pervaded by sensing technologies, collecting a growing volume of data aimed at supporting operational and investment decisions. These sensors monitor system characteristics, i.e. flows, pressures and water quality, such as in pipes. This paper presents the application of pattern matching techniques and binary associative neural networks for novelty detection in such data. A protocol for applying pattern matching to automatically recognise specific waveforms in time series based on their shapes is described together with a system called Advanced Uncertain Reasoning Architecture (AURA) Alert for autonomous determination of novelty. AURA is a class of binary neural network that has a number of advantages over standard artificial neural network techniques for condition monitoring including a sound theoretical basis to determine the bounds of the system operation. Results from application to several case studies are provided including both hydraulic and water quality data. In the case of pattern matching, the results demonstrated some transferability of burst patterns across District Metered Areas; however limitations in performance and difficulties with assembling pattern libraries were found. Results for the AURA system demonstrate the potential for robust event detection across multiple parameters providing valuable information for diagnosis; one example also demonstrates the potential for detection of precursor information, vital for proactive management.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3