Affiliation:
1. Department of Civil Engineering, University of Bristol, Bristol, UK
2. Department of Civil Engineering, University of Al-Mustansiriyah, Baghdad, Iraq
Abstract
Merging rain gauge and radar data improves the accuracy of precipitation estimation for urban areas. Since the rain gauge network around the ungauged urban catchment is fixed, the relevant question relates to the optimal merging area that produces the best rainfall estimation inside the catchment. Thus, an incremental radar-gauge merging was performed by gradually increasing the distance from the centre of the study area, the number of merging gauges around it and the radar domain. The proposed adaptive merging scheme is applied to a small urban catchment in west Yorkshire, Northern England, for 118 extreme events from 2007 to 2009. The performance of the scheme is assessed using four experimental rain gauges installed inside the study area. The result shows that there is indeed an optimum radar-gauge merging area and consequently there is an optimum number of rain gauges that produce the best merged rainfall data inside the study area. Different merging methods produce different results for both classified and unclassified rainfall types. Although the scheme was applied on daily data, it is applicable to other temporal resolutions. This study has importance for other studies such as urban flooding analysis, since it provides improved rainfall estimation for ungauged urban catchments.
Subject
Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献