Exploration of an adaptive merging scheme for optimal precipitation estimation over ungauged urban catchment

Author:

Fadhel Sherien12,Rico-Ramirez Miguel Angel1,Han Dawei1

Affiliation:

1. Department of Civil Engineering, University of Bristol, Bristol, UK

2. Department of Civil Engineering, University of Al-Mustansiriyah, Baghdad, Iraq

Abstract

Merging rain gauge and radar data improves the accuracy of precipitation estimation for urban areas. Since the rain gauge network around the ungauged urban catchment is fixed, the relevant question relates to the optimal merging area that produces the best rainfall estimation inside the catchment. Thus, an incremental radar-gauge merging was performed by gradually increasing the distance from the centre of the study area, the number of merging gauges around it and the radar domain. The proposed adaptive merging scheme is applied to a small urban catchment in west Yorkshire, Northern England, for 118 extreme events from 2007 to 2009. The performance of the scheme is assessed using four experimental rain gauges installed inside the study area. The result shows that there is indeed an optimum radar-gauge merging area and consequently there is an optimum number of rain gauges that produce the best merged rainfall data inside the study area. Different merging methods produce different results for both classified and unclassified rainfall types. Although the scheme was applied on daily data, it is applicable to other temporal resolutions. This study has importance for other studies such as urban flooding analysis, since it provides improved rainfall estimation for ungauged urban catchments.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3