Modelling aerated flows with smoothed particle hydrodynamics

Author:

Meister Michael1,Rauch Wolfgang1

Affiliation:

1. Unit of Environmental Engineering, University of Innsbruck, Technikerstrasse 13, 6020 Innsbruck, Austria

Abstract

Modelling aerated flows is a complex application of computational fluid dynamics (CFD) since the interfaces between air and water change rapidly. In this work, the simulation of aerated flows with the smoothed particle hydrodynamics (SPH) method is investigated with a focus towards the application in engineering practice. To prove the accuracy of the method, the processes of air entrainment and rising air bubbles are studied. Through monitoring the evolution of the bubble contours it is shown that the novel approach of adding artificial repulsion forces at the interface does not alter the dynamics but stabilizes the flow. Building on these fundamental processes we extend the discussion to practical applications with a special focus on forced aeration. Since the employment of a detailed SPH model to practical problems remains out of bounds due to the high computational demand, we propose a combined experimental and numerical study where experimental bubble characteristics are imposed on the numerical simulation. Based on the data of the conducted bubble column experiment, the computational demand is significantly decreased such that the oxygen consumption due to biokinetic processes can be modelled. The future perspective is to apply SPH to urban water systems, e.g., for simulating detailed processes in wastewater treatment and sewer hydraulics.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3