From digital twin paradigm to digital water services

Author:

Gino Ciliberti Francesco1ORCID,Berardi Luigi1ORCID,Laucelli Daniele Biagio2ORCID,David Ariza Andres2,Vanessa Enriquez Laura2,Giustolisi Orazio2ORCID

Affiliation:

1. a Department of Engineering and Geology, University ‘G. D'Annunzio’ of Chieti Pescara, Pescara 65127, Italy

2. b Department of Civil, Environmental, Land, Building Engineering and Chemistry, Technical University of Bari (DICATECH), Bari 70126, Italy

Abstract

Abstract In the context of water distribution networks (WDNs), researchers and technicians are actively working on new ways to transition into the digital era. They are focusing on creating standardized methods that fit the unique characteristics of these systems, with a strong emphasis on developing customized digital twins. This involves combining advanced hydraulic modeling with advanced data-driven techniques like artificial intelligence, machine learning, and deep learning. This paper begins by giving a detailed overview of the important progress that has led to this digital transformation. It highlights the potential to create interconnected digital water services (DWSs) that can support all aspects of managing, planning, and designing WDNs. This approach introduces standardized procedures that allow a continuous improvement of the digital representation of these networks. Additionally, technicians benefit from DWSs developed as QGIS software plugins. These services strategically enhance their understanding of technical decisions, improving logical reasoning, consistency, scalability, integrability, efficiency, effectiveness, and adaptability for both short-term and long-term management tasks. Notably, the framework remains adaptable, ready to embrace upcoming technological advancements and data gathering capabilities, all while keeping end-users central in shaping these technical developments.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing the Impact of Asset Management on Energy Recovery: The ENERGIDRICA Project;The 3rd International Joint Conference on Water Distribution Systems Analysis & Computing and Control for the Water Industry (WDSA/CCWI 2024);2024-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3