Flow field reconstruction of trash rack based on generative adversarial networks

Author:

Guo Ganggui1ORCID,Liu Yakun1ORCID,Zhang Di1,Cao Ze1,Deng Yangyu1

Affiliation:

1. 1 School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

ABSTRACT A new model - super-resolution Wasserstein Generative Adversarial Network with Gradient Penalty (SRWgan-GP) - is developed with resolution of 512×512 to reconstruct the sliced 2D high-resolution flow field from low-resolution data. To train the SRWgan-GP model, flow field data obtained from Large Eddy Simulation (LES) behind the trash racks is utilized. A sub-pixel convolution layer is incorporated in the framework to generate higher-resolution feature maps (512 × 512), which significantly reduces the network's memory requirements under the same output resolution .The performance of the proposed model is compared with that of other commonly used generative models including u-shaped architecture model (Unet) and Convolutional Neural Network (CNN). The results reveal that the SRWgan-GP model excels in reconstructing the flow field along both the x with and y axes, demonstrating the most accurate performance with minimal error achieving an MSE of 0.001, PSNR of 46.557, and SSIM of 0.994 in depicting turbulent structures and the Kįrmįn vortex street. Power Spectral Density (PSD) analysis shows that the primary shedding frequency of the vortex street is consistent with LES at approximately 10Hz for SRWgan-GP. Additionally, the SRWgan-GP exhibits proficient accuracy in computing second-order statistics of the flow field, achieving minimal error in instantaneous Reynolds shear stresses.

Funder

National Nature Science Foundation of China

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3