Development of multi-objective reservoir operation rules for integrated water resources management

Author:

Cheong T. S.1,Ko I.2,Labadie J. W.3

Affiliation:

1. Disaster Information Analysis Center, National Institute for Disaster Prevention, 253-42, Gongdeok 2-dong, Mapo-Gu, Seoul 121-179, South Korea

2. Korea Institute of Water Resources and Environment, Korea Water Resources Corporation, Daejeon 305-730, Korea South Korea

3. Department of Civil Engineering, Colorado State University, Fort Collins CO, 80523, USA

Abstract

Real-time monitoring, databases, optimization models and visualization tools have been integrated into a Decision Support System (DSS) for optimal water resources management of two water supply reservoirs, the Daechung Reservoir and the Yongdam Reservoir of the Geum River basin, Daejeon, Korea. The KModSim as a DSS has been designed to provide information on current reservoir conditions to operational staff and to help in making decisions for short- and long-term management. For the physical calibration, the network simulations in seasonal water allocation of both reservoirs are performed for 23 years from January 1 1983 to June 30 2006. Linear and nonlinear operating rules are developed by using the actual reservoir operation data obtained from both reservoirs which are then used in KModSim by the hydrologic state method to estimate optimized target storages of both reservoirs. For validation of hydrologic states in KModSim and scenario testing for the management simulations, the optimal network simulation for the seasonal water allocations from October 1 2002 to June 30 2006 were also performed. The results' simulation by new rules fit the measured actual reservoir storage and represent well the various outflow discharge curves measured at the gauging stations of Geum River. The developed operating rules are proven to be superior in explaining actual reservoir operation as compared to the simulated target storages by existing optimization models.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3