Identification of monthly municipal water demand system based on autoregressive integrated moving average model tuned by particle swarm optimization

Author:

Boubaker Sahbi1

Affiliation:

1. Department of Electrical Engineering, Community College, University of Hail, Saudi Arabia and Research Unit on Study of Systems and Renewable Energy, Hail City, Saudi Arabia and National College of Engineering of Monastir, Monastir City, Tunisia

Abstract

In this paper, a modeling-identification approach for the monthly municipal water demand system in Hail region, Saudi Arabia, is developed. This approach is based on an auto-regressive integrated moving average (ARIMA) model tuned by the particle swarm optimization (PSO). The ARIMA (p, d, q) modeling requires estimation of the integer orders p and q of the AR and MA parts; and the real coefficients of the model. More than being simple, easy to implement and effective, the PSO-ARIMA model does not require data pre-processing (original time-series normalization for artificial neural network (ANN) or data stationarization for traditional stochastic time-series (STS)). Moreover, its performance indicators such as the mean absolute percentage error (MAPE), coefficient of determination (R2), root mean squared error (RMSE) and average absolute relative error (AARE) are compared with those of ANN and STS. The obtained results show that the PSO-ARIMA outperforms the ANN and STS approaches since it can optimize simultaneously integer and real parameters and provides better accuracy in terms of MAPE (5.2832%), R2 (0.9375), RMSE (2.2111 × 105m3) and AARE (5.2911%). The PSO-ARIMA model has been implemented using 69 records (for both training and testing). The results can help local water decision makers to better manage the current water resources and to plan extensions in response to the increasing need.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3