Affiliation:
1. 1 Water Distribution and Sewerage Systems Research Center (CIACUA), University of the Andes, Carrera 1 Este No. 19A-40, Bogotá, Colombia
Abstract
Abstract
The chlorine and total trihalomethane (TTHM) concentrations are sparsely measured in the trunk network of Bogotá, Colombia, which leads to a high uncertainty level at an operational level. For this reason, this research assessed the prediction accuracy for chlorine and TTHM concentrations of two black-box models based on the following artificial intelligence techniques: artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS) as a modelling alternative. The simulation results of a hydraulic and water quality analysis of the network in EPANET and its multi-species extension EPANET-MSX were used for training the black-box models. Subsequently, the Threat Ensemble Vulnerability Assessment-Sensor Placement Optimization Tool (TEVA-SPOT) and Evolutionary Polynomial Regression-Multi-Objective Genetic Algorithm (EPR-MOGA-XL) were jointly applied to select the most representative input variables and locations for predicting water quality at other points of the network. ANNs and ANFIS were optimized with a multi-objective approach to reach a compromise between training performance and generalization capacity. The ANFIS models had a higher mean Training and Test Nash–Sutcliffe Index (NSI) in contrast with ANNs. In general, the models had a satisfactory mean prediction performance. However, some of them did not achieve suitable Test NSI values, and the prediction accuracy for different operational statuses was limited.
Subject
Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Operational Effects on Water Quality Evolution in Water Distribution Systems;The 3rd International Joint Conference on Water Distribution Systems Analysis & Computing and Control for the Water Industry (WDSA/CCWI 2024);2024-09-02
2. Black-Box Modeling of Water Quality in WDS: A Case Study;World Environmental and Water Resources Congress 2023;2023-05-18