Affiliation:
1. Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 80-233 Gdansk, Poland
Abstract
Abstract
The paper concerns the numerical solution of one-dimensional (1D) and two-dimensional (2D) advection–diffusion equations. For the numerical solution of the 1D advection–diffusion equation, a method, originally proposed for the solution of the 1D pure advection equation, has been developed. A modified equation analysis carried out for the proposed method allowed increasing of the resulting solution accuracy and, consequently, to reduce the numerical dissipation and dispersion. This is achieved by proper choice of the involved weighting parameter being a function of the Courant number and the diffusive number. The method is adaptive because for uniform grid point and for uniform flow velocity, the weighting parameter takes a constant value, whereas for non-uniform grid and for varying flow velocity, its value varies in the region of solution. For the solution of the 2D transport equation, the dimensional decomposition in the form of Strang splitting technique is used. Consequently, this equation is reduced to a series of the 1D equations with regard to x- and y-directions which next are solved using the aforementioned method. The results of computational experiments compared with the exact solutions confirmed that the proposed approaches ensure high solution accuracy of the transport equations.
Subject
Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献