Variability effect of hydrological regime on river quality pattern and its uncertainties: case study of Zarjoob River in Iran

Author:

Ebrahimi Saman1ORCID,Khorram Mahdis1

Affiliation:

1. School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

Abstract River water quality assessment, affected by pollution load, and river regime changes in various climate conditions, is an implementation that simplifies water resources management, and justifies terms for increases or decreases in human activities. The current paper aims to offer a water quality model of a river considering parametric, hydrologic, and pollution load uncertainty by using uncertainty indexes like Plevel, ARIL, and NUE. These indexes were used to analyze the influences of the model's parameters and the river's regime alternations on the results. A Qual2K model, calibrated with PSO algorithm, is presented and connected to GLUE algorithm to assess the model's uncertainties like effective input parameters on the modeled variations, headwater flow, and input pollutions. Zarjoob River, in the north of Iran, was chosen as the case study. The results illustrate that the interaction among parameters, hydrologic and pollutant discharge data should be considered in river water quality simulation. The presented methodology can analyze the influences of parametric uncertainty, parametric and hydrologic uncertainty, and pollution input load uncertainty according to any quantity of observations and the modeled results of any river.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Reference27 articles.

1. Risk-based decision making to evaluate pollutant reduction scenarios

2. Evaluation of high-resolution satellite products for streamflow and water quality assessment in a Southeastern US Watershed;Alnahit;Journal of Hydrology: Regional Studies,2020

3. Optimal design of stormwater collection networks considering hydraulic performance and BMPs;Azari;International Journal of Environmental Research,2018

4. Water Quality Modelling for Rivers and Streams

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3