Formation of meandering streams in a young floodplain within the Yarlung Tsangpo Grand Canyon area in the Tibetan Plateau

Author:

Cheng Yunshuo1ORCID,Li Zhiwei1ORCID,Yu Guo-An2,Yao Weiwei3,Chen Bang4

Affiliation:

1. a State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China

2. b Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

3. c State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China

4. d School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China

Abstract

ABSTRACT A recent discovery of two unique meandering streams near the Yarlung Tsangpo Grand Canyon facilitates the present study. Given the contrasting channel patterns compared with the surrounding bedrock and braided reaches, as well as their recent formation due to dam-induced topographic changes within the valley, this study offers critical insights into the formation and evolution processes of meandering channels. It is found that, first, the prolonged sedimentation process due to the backwater of the mainstream of the floodplain proves a material base for the formation of the meandering river. Proper bank strength provided by the floodplain (stratified layer of root-soil composite and silty clay) contrasts the stream from a braided pattern into a single-threaded pattern, then the alternate bar in the upstream preludes the meandering channel formation. The annual migration rate of the stream is consistent with other large-scale natural meandering rivers. Congruences and disparities with the analytical meandering migration model of the present stream (that the meandering path follows the Kinoshita curve with noticeable flatness but no skewness) highlight the complex interplay of local factors in shaping meandering processes, offering valuable insights into both the unique characteristics of the Cuoka streams and the broader principles governing meander formation.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3