Affiliation:
1. a ICAR Research Complex for Eastern Region, P.O. B V Complex, Patna 800014, India
2. b Department of Mathematics, Zayed University, Dubai, UAE
Abstract
Abstract
Hybrid finite analytic solution (HFAS), Galerkin's method based finite element solution (FES) and fully implicit finite difference solution (FIFDS) of one dimensional nonlinear Boussinesq equation and Analytical solution of Boussinesq equation linearized by Baumann's transformation (analytical solution I, AS I) as well as linearized by Werner's transformation (analytical solution II, AS II) were employed to obtain water table rise in a horizontal unconfined aquifer lying between two canals located at finite distance having different elevations and subjected to various patterns of recharge, i.e. zero recharge, constant recharge, as well as time varying recharge. Considering HFAS as benchmark solution, water table in mid region as obtained from FES followed by FIFDS was observed quite close to that obtained from HFAS and as per L2 and Tchebycheff norms computation, it was ranked at first and second place, respectively. Both AS I and AS II predicted higher water table at t = 5 days but at t = 10 days, AS I predicted lower and AS II predicted higher water table at all distances due to linearization effect. So, analytical solutions of linearized Boussinesq equation were rated lower than numerical solutions of nonlinear Boussinesq equation.
Subject
Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献