Evaluation of effective parameters of Manning roughness coefficients in HDPE culverts via kernel-based approaches

Author:

Nassaji Matin Ghazaleh1ORCID

Affiliation:

1. Department of Water Resource Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran

Abstract

Abstract The prediction of Manning coefficients plays a prominent role in the estimation of head losses along culvert systems. Although the Manning coefficient is treated as a constant, previous studies showed the dependency of this coefficient on several parameters. This study aims to evaluate the effective parameters of the Manning roughness coefficient using intelligence approaches such as Gaussian process regression (GPR) and support vector machines (SVM), in which the input variables were considered as dimensionless and dimensional. In addition to the enhanced efficiency of the SVM approach compared to the GPR approach in model development with dimensionless input variables, the accuracy of model A(I) with input parameters of Fr (Froude) and y/D (the ratio of water depth to culvert diameter) and performance criteria of correlation coefficient (R) = 0.738, determination coefficient (DC) = 0.0962, root mean square errors (RMSE) = 0.0015 and R = 0.818, DC = 0.993 and RMSE = 0.0006 for GPR and SVM approaches were the highest. Thus, for the second category, a model with an input parameter of discharge (Q), hydraulic radius (RH), and culvert's slope (S0) showed good efficiency in predicting the Manning coefficient, in which the performance criteria of GPR and SVM approaches were (R = 0.719, DC = 0.949, RMSE = 0.0013) and (R = 0.742, DC = 0.991, RMSE = 0.007), respectively. Furthermore, developed OAT (one-at-a-time) sensitivity analysis revealed that relative depth y/D and Q are the most important parameters in the prediction of the Manning coefficient for models with dimensionless and dimensional input variables, respectively.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Reference38 articles.

1. Semi-seasonal groundwater forecast using multiple data-driven models in an irrigated cropland

2. American Concrete Pipe Association 2007 Manning's n Value A History of Research.

3. Calibration of channel roughness in intermittent rivers using HEC-RAS model: case of Sarimsakli creek, Turkey

4. Choice of V for V-fold cross-validation in least-squares density estimation;Arlot;The Journal of Machine Learning Research,2016

5. A simple innovative method for calibration of Manning’s roughness coefficient in rivers using a similarity concept

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3