Novelty detection for time series data analysis in water distribution systems using support vector machines

Author:

Mounce Stephen R.1,Mounce Richard B.1,Boxall Joby B.1

Affiliation:

1. Pennine Water Group, Department of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD, UK

Abstract

The sampling frequency and quantity of time series data collected from water distribution systems has been increasing in recent years, giving rise to the potential for improving system knowledge if suitable automated techniques can be applied, in particular, machine learning. Novelty (or anomaly) detection refers to the automatic identification of novel or abnormal patterns embedded in large amounts of “normal” data. When dealing with time series data (transformed into vectors), this means abnormal events embedded amongst many normal time series points. The support vector machine is a data-driven statistical technique that has been developed as a tool for classification and regression. The key features include statistical robustness with respect to non-Gaussian errors and outliers, the selection of the decision boundary in a principled way, and the introduction of nonlinearity in the feature space without explicitly requiring a nonlinear algorithm by means of kernel functions. In this research, support vector regression is used as a learning method for anomaly detection from water flow and pressure time series data. No use is made of past event histories collected through other information sources. The support vector regression methodology, whose robustness derives from the training error function, is applied to a case study.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3